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Abstract

I want to derive the formula for the average power loss/unit length of a thin walled, infinitely

long round beam pipe from Eddy currents that Moritz[2, 3] stated but did not prove. I have listed

the assumptions that I have made in order to derive the formula. Unfortunately, some of the

assumptions required for deriving the formula are suspect because of the “infinitely” long beam

pipe requirement. Therefore, caveat emptor with its use!
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I. THEORY

I want to derive the average power loss per unit length of an infinitely long, thin walled

round beam pipe from Eddy currents due to an oscillating B-field that is normal to the

pipe’s axis. The analysis is not that straight forward! But there is a reference, Haus[1], from

which I will use to start my analysis.

The geometry that I will analyze is shown in Fig. 1. The B-field is in the y direction.

Unfortunately, this means that there is no natural coordinate system for both E and B in

this geometry. I will use the cylindrical coordinate system: (r, θ, z) for E and Cartesian

coordinate sytem: (x, y, z) for B.
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FIG. 1. This shows the transverse cross section of the round beam pipe of radius a and thickness

∆. The dipole field, By, is pointing in the y direction. Shell currents flow in the ±z direction.

In this analysis, I will assume that the beam pipe is infinitely long so that I don’t need

to take care of the edge effects. But here’s more assumptions that I have to make in order

to derive the formula:

1. The shell currents flow in both the +z and −z directions. A shell current that flows

in the +z direction must return in the −z direction. Since the beam pipe is infinitely
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long, there has to be perfect shorts at the ends of the beam pipe that is infinitely far

away to allow for the current paths to close!

2. The wall thickness ∆� δ where δ is the skin depth.

3. When I apply Ohm’s law, taking into account point (1), I only have the z component

of the current density, j, to worry about

jz(r, θ) = σEz(r, θ) (1)

where σ is the conductivity, and I have explicitly noted the dependence of jz and thus

Ez on their location. I then use point (2) that states that ∆� δ, this means that jz

is constant in the cross section of the wall. Let kz be the surface current density then

I have at r = a

kz(r = a, θ) = jz(r = a, θ)∆

⇒ kz(r = a, θ) = σ∆× Ez(r = a, θ)
(2)

4. The wall has the same permeability, µ0, as vacuum, i.e. it is not magnetic. This

requirement ensures that the external field is not disturbed by the beam pipe because

it is essentially transparent to the B-field.
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FIG. 2. The red lines show the path that I have chosen for the surface current density kz to flow.

The path encloses half the surface of the beam pipe. By symmetry arguments kz(θ+π) = −kz(θ).

The normal vector that defines the surface dA is at an angle φ w.r.t. θ.
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I will start with the integral form of Faraday’s law which is∮
E · d` = − d

dt

∫
A

B · dA (3)

The integral path, in red, is shown in Fig. 2. The arcs of the path span half the beam pipe,

i.e. each arc has length πa.

Therefore, by using Eq. 3, I can calculate kz(θ) shown in the Fig. 2 where I can exploit

the symmetry of the path because kz(θ + π) = −kz(θ). Thus Eq. 3 becomes

− L

σ∆
[kz(θ)− kz(θ + π)] = − 2L

σ∆
kz(θ)

= − d

dt

∫
A

B · dA

 (4)

where I have used Eq. 2, and the “−” sign on the lhs comes from the kz(θ) current flowing

in the opposite direction w.r.t. ẑ in Fig. 2. There are no contributions to the lhs from the

arcs because the surface current density is always normal to the arcs from point (1) above.

For the rhs, which has the integral over the enclosed area defined by the path, I can write

Bz in (x, y) coordinates as

Bz =

 0

Bz

 (5)

and dA in (x, y) coordinates

dA = (L× a dφ)

cos(θ + φ)

sin(θ + φ)

 (6)

Thus the integral ∫
A

B · dA = aBzL

∫ π

0

sin(θ + φ) dφ = 2aBzL cos θ (7)

I can then substitute the above into Eq. 4 to obtain the surface current density, kz in terms

of Ḃy and θ

2L

σ∆
kz(θ) = 2aḂzL cos θ

⇒ kz(θ) = aσ∆× Ḃz cos θ

(8)

which is independent of L (as it should be).
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A. Power loss per unit length

From Eq. 8, the current dIz that flows into a strip that is a dθ wide is

dIz = kz(θ)a dθ (9)

The resistivity of the beam pipe is ρ = 1/σ (units of Ω · m) and the resistance of a beam

pipe of length L and cross sectional area ∆× a dθ is

R = ρ
L

∆× a dθ
=

L

σ∆× a dθ
(10)

Thus, the instantaneous power loss is simply

dP = dI2zR = (kz(θ)a dθ)
2 × L

σ∆× a dθ
=
k2z(θ)L

σ∆
a dθ

= a3Lσ∆Ḃ2
y cos2 θ dθ

 (11)

Finally, I can integrate θ from 0 to 2π to obtain the instantaneous power loss per unit length

of the beam pipe and it is

P/L = a3σ∆× Ḃ2
y

∫ 2π

0

cos2 θ dθ = a3πσ∆× Ḃ2
y (12)

which is the same equation that Moritz showed in his report (eq. 37) [2] and his slides [3].

1. Average power loss per unit length

I will adopt a sinusoidal form for By in order to calculate the average power loss per unit

length. Let

By(t) = B0 sinωt+ DC offset (13)

where ω is the ramp frequency and B0 is the magnitude of the B-field. The DC offset is

irrelevant because I will differentiate the above to get

Ḃy(t) = B0ω cosωt (14)

which I can substitute into Eq. 12 and average over 1 period

Pave/L = a3πσ∆× ω

2π

∫ 2π/ω

0

B2
0ω

2 cos2 ωt dt

= a3πσ∆× B2
0ω

2

2

 (15)
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or in the more familiar form, where I replace ω = 2πf to get

Pave/L = 2π3a3f 2σ∆×B2
0 (16)
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